
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Non-negative matrix factorization with transform learning (TL-NMF) aims at estimating a short-time orthogonal transform that projects temporal data into a domain that is more amenable to NMF than off-the-shelf time-frequency transforms. In this work, we study the identifiability of TL-NMF under the Gaussian composite model. We prove that one can uniquely identify row-spaces of the orthogonal transform by optimizing the likelihood function of the model. This result is illustrated on a toy source separation problem which demonstrates the ability of TL-NMF to learn a suitable orthogonal basis.
Statistical estimation, Nonnegative Matrix Factorization, Quasi-Newton method, 004, 510, Joint-diagonalization, Nonconvex optimization, [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing, NMF, Transform learning
Statistical estimation, Nonnegative Matrix Factorization, Quasi-Newton method, 004, 510, Joint-diagonalization, Nonconvex optimization, [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing, NMF, Transform learning
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
