
Of stochastic differential equations, diffusion processes have been adopted in numerous applications, as more relevant and flexible models. This paper studies diffusion processes in a different setting, where for a given stationary distribution and average variance, it seeks the diffusion process with optimal convergence rate. It is shown that the optimal drift function is a linear function and the convergence rate of the stochastic process is bounded by the ratio of the average variance to the variance of the stationary distribution. Furthermore, the concavity of the optimal relaxation time as a function of the stationary distribution has been proven, and it is shown that all Pearson diffusion processes of the Hypergeometric type with polynomial functions of at most degree two as the variance functions are optimal.
15 pages, 0 figure, 1 table
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), Probability (math.PR), FOS: Mathematics, Mathematics - Probability
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), Probability (math.PR), FOS: Mathematics, Mathematics - Probability
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
