
Owing in part to complementary metal-oxide-semiconductor (CMOS) scaling issues, the semiconductor industry is placing an increased emphasis on emerging materials and devices that may provide a solution beyond the 22-nm node. Single and few layers of carbon sheets (graphene) have been fabricated by a variety of techniques including mechanical exfoliation and chemical vapor deposition, and field-effect devices have been demonstrated with room temperature field-effect mobilities close to 10 000 cm2/Vs. But since graphene is a gapless semiconductor, these transistors have high off-state leakage and nonsaturating drive currents. This is problematic for digital logic, but is acceptable for analog device applications such as low-noise amplifiers and radio-frequency (RF)/millimeter-wave field-effect transistors (FETs). The remarkable transport physics of graphene due to its linear bandstructure have led to novel beyond CMOS logic devices as well, such as “pseudospin” devices.
nanoelectronics, 2-DIMENSIONAL ELECTRON, GRAPHITE, Beyond complementary metal-oxide-semiconductor (CMOS) logic, TRANSISTORS, FIELD, BANDGAP, graphene field-effect transistors (FETs), STATE, EPITAXIAL GRAPHENE
nanoelectronics, 2-DIMENSIONAL ELECTRON, GRAPHITE, Beyond complementary metal-oxide-semiconductor (CMOS) logic, TRANSISTORS, FIELD, BANDGAP, graphene field-effect transistors (FETs), STATE, EPITAXIAL GRAPHENE
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 73 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
