Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Ocea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Oceanic Engineering
Article . 1986 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HF radar observations of Arctic pack-ice breakup

Authors: B. Lipa; R. Crissman; D. Barrick;

HF radar observations of Arctic pack-ice breakup

Abstract

This paper describes the first reported high-resolution remote measurements of sea-ice velocities during the summer Arctic pack-ice breakup, made with a high-frequency (HF) radar system (CODAR, for Coastal Ocean Dynamics Applications Radar) located on Cross Island, Alaska. Each 36-min observation also gives the positions of the ice edge, the moving ice, and the open water, with an azimuthal and distance resolution of 5\deg and 1.2 km, respectively, to a range of 15 km. The statistical uncertainties in speed are typically 2-4 cm/s. The ice breakup was observed over a two-day period starting with low ice velocity and no open water and ending with ice and current velocities of approximately 40 cm/s. The position of the ice edge is verified by a simultaneous synthetic aperture radar (SAR) image. To compare the ice, current, and wind velocities, a uniform velocity model was fitted to the measurements of radial velocity. The speed of both ice and current under free drift conditions was found to lie between 2 and 5 percent of the wind speed and the direction within 20\deg of the wind direction.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!