
This paper describes the first reported high-resolution remote measurements of sea-ice velocities during the summer Arctic pack-ice breakup, made with a high-frequency (HF) radar system (CODAR, for Coastal Ocean Dynamics Applications Radar) located on Cross Island, Alaska. Each 36-min observation also gives the positions of the ice edge, the moving ice, and the open water, with an azimuthal and distance resolution of 5\deg and 1.2 km, respectively, to a range of 15 km. The statistical uncertainties in speed are typically 2-4 cm/s. The ice breakup was observed over a two-day period starting with low ice velocity and no open water and ending with ice and current velocities of approximately 40 cm/s. The position of the ice edge is verified by a simultaneous synthetic aperture radar (SAR) image. To compare the ice, current, and wind velocities, a uniform velocity model was fitted to the measurements of radial velocity. The speed of both ice and current under free drift conditions was found to lie between 2 and 5 percent of the wind speed and the direction within 20\deg of the wind direction.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
