
With recent successes of laboratory, inatmosphere, and space demonstrations of free-space optical communications, there is no doubt that the technology is ready for operational deployment. While these successes have shown that there are no laws of physics against such systems, their estimated system costs are still much too high for serious considerations. Two types of development can reduce the cost dramatically. The first is via the improvement of physical-link communication efficiency by an order of magnitude using photon-counting receivers for vacuum channels, system complexity, weight, and power for space systems can be greatly reduced. The second is through the use of coherent systems in links where clear-air turbulence impairs communication efficiency, and in multiple access applications where coherent processing can reduce the level of interference, significant reduction in system costs can be realized
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 642 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
