Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/itw555...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY NC SA
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-User Distributed Computing Via Compressed Sensing

Authors: Khalesi, Ali; Daei, Sajad; Kountouris, Marios; Elia, Petros;

Multi-User Distributed Computing Via Compressed Sensing

Abstract

The multi-user linearly-separable distributed computing problem is considered here, in which $N$ servers help to compute the real-valued functions requested by $K$ users, where each function can be written as a linear combination of up to $L$ (generally non-linear) subfunctions. Each server computes a fraction $γ$ of the subfunctions, then communicates a function of its computed outputs to some of the users, and then each user collects its received data to recover its desired function. Our goal is to bound the ratio between the computation workload done by all servers over the number of datasets. To this end, we here reformulate the real-valued distributed computing problem into a matrix factorization problem and then into a basic sparse recovery problem, where sparsity implies computational savings. Building on this, we first give a simple probabilistic scheme for subfunction assignment, which allows us to upper bound the optimal normalized computation cost as $γ\leq \frac{K}{N}$ that a generally intractable $\ell_0$-minimization would give. To bypass the intractability of such optimal scheme, we show that if these optimal schemes enjoy $γ\leq - r\frac{K}{N}W^{-1}_{-1}(- \frac{2K}{e N r} )$ (where $W_{-1}(\cdot)$ is the Lambert function and $r$ calibrates the communication between servers and users), then they can actually be derived using a tractable Basis Pursuit $\ell_1$-minimization. This newly-revealed connection between distributed computation and compressed sensing opens up the possibility of designing practical distributed computing algorithms by employing tools and methods from compressed sensing.

Submitted to ITW2023. arXiv admin note: text overlap with arXiv:2206.11119

Related Organizations
Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, [INFO] Computer Science [cs], Electrical Engineering and Systems Science - Signal Processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green