Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/itsc.2...
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Recurrent Neural Networks and Optimization Meta-Heuristics for Green Urban Route Planning with Dynamic Traffic Estimates

Authors: Javier Del Ser; Ismael Estalayo; Ibai Laña; Eneko Osaba;

Deep Recurrent Neural Networks and Optimization Meta-Heuristics for Green Urban Route Planning with Dynamic Traffic Estimates

Abstract

Within the current technological landscape sketched out by Intelligent Transport Systems (ITS), traffic flow prediction and route planning are two of the cornerstones on which the scientific community has been focused for years. Applications leveraging advances in these fields range from individual mobility planning to the establishment of optimal delivery routes, with doubtless benefits yielded to an immense strata of society. Intuitively, combining both prediction and route planning in a single, robust system could boost even further their paramount importance within the ITS field. However, most approaches reported so far in literature develop route planning techniques relying on actual traffic data (current or past observations) rather than on future traffic estimations, which could reliably represent the traffic flow status while the route is being performed. Unfortunately, research efforts around the monolithic hybridization of traffic prediction and route planning are still scarce. This manuscript embraces this noted issue as its main motivation by proposing an advanced routing platform endowed with a Long Short-Term Memory (LSTM) model for traffic forecasting purposes. The predictive output of this model serves as the input to a route planner, which constructs optimal green routes minimizing not only the total travel time, but also the CO 2 emissions of the vehicle. The system has been tested using Open Trip Planner and real data collected over the city of Arhus (Denmark), from which three different types of routes have been built and analyzed along a selection of predictive time horizons. The obtained results are promising and underscore the need for considering traffic predictions along the route for an improved usability of current route planning frameworks.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?