Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Objective Optimization of Bike Routes for Last-Mile Package Delivery with Drop-Offs

Authors: Osaba, Eneko; Del Ser, Javier; Nebro, Antonio J.; Laña, Ibai; Bilbao, Miren Nekane; Sanchez-Medina, Javier J.;

Multi-Objective Optimization of Bike Routes for Last-Mile Package Delivery with Drop-Offs

Abstract

This paper focuses on modeling and solving a last-mile package delivery routing problem with third-party drop-off points. The study is applicable to small or medium-sized delivery companies, which use bikes for performing the routes in an influence area bounded to a city. This routing setup has been formulated as a multi-objective optimization problem, balancing three conflicting objectives: a weighted measure of distance of the route, the safety of the biker, and the economic profit yielded by the delivery of goods to customers. Six different and heterogeneous multi-objective algorithms have been applied to the modeled problem: NSGA-II, MOCell, SMPSO, MOEA/D, NSGA-III and MOMBI2. In order to evaluate the performance of these algorithms, we have devised three experimental setups encompassing different real localizations in Madrid (Spain). For deploying a realistic simulation platform, the open-source Open Trip Planner framework has been used as a proxy evaluator of the produced routes. Results have been compared using the obtained Median and Inter Quartile Range of the hypervolume values reached by the algorithms. Conclusions drawn from this study show that MOCell is the best method for the proposed problem, reaching routes that balance the considered three objectives in a more Pareto-optimal fashion than the rest of counterparts in the benchmark.

870

865

6

Keywords

Optimization, Planning, 332703 Sistemas de transito urbano, 120304 Inteligencia artificial, Safety, Companies, Routing, Roads

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!