Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compressed sensing of compressible signals

Authors: Sajjad Beygi; Arian Maleki; Urbashi Mitra; Shirin Jalali;

Compressed sensing of compressible signals

Abstract

A novel low-complexity robust-to-noise iterative algorithm named compression-based gradient descent (C-GD) algorithm is proposed. C-GD is a generic compressed sensing recovery algorithm, that at its core, employs compression codes, such as JPEG2000 and MPEG4. Through using compression codes, C-GD strongly generalizes the scope of structures used by compressed sensing recovery algorithms beyond sparsity or low-rankness. The squared error of the proposed method and its associated convergence is characterized and predicts the strong performance of C-GD. Numerical results suggest that C-GD, when combined with state-of-the-art compression codes, either outperforms or performs comparably to modern compressed sensing recovery methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?