
arXiv: 1302.4660
This paper derives fundamental limits associated with compressive classification of Gaussian mixture source models. In particular, we offer an asymptotic characterization of the behavior of the (upper bound to the) misclassification probability associated with the optimal Maximum-A-Posteriori (MAP) classifier that depends on quantities that are dual to the concepts of diversity gain and coding gain in multi-antenna communications. The diversity, which is shown to determine the rate at which the probability of misclassification decays in the low noise regime, is shown to depend on the geometry of the source, the geometry of the measurement system and their interplay. The measurement gain, which represents the counterpart of the coding gain, is also shown to depend on geometrical quantities. It is argued that the diversity order and the measurement gain also offer an optimization criterion to perform dictionary learning for compressive classification applications.
5 pages, 3 figures, submitted to the 2013 IEEE International Symposium on Information Theory (ISIT 2013)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
