
We consider the level of information security provided by random linear network coding in network scenarios in which all nodes comply with the communication protocols yet are assumed to be potential eavesdroppers (i.e. "nice but curious"). For this setup, which differs from wiretapping scenarios considered previously, we develop a natural algebraic security criterion, and prove several of its key properties. A preliminary analysis of the impact of network topology on the overall network coding security, in particular for complete directed acyclic graphs, is also included.
Comment: 5 pages, 2 figures, Accepted for the IEEE International Symposium on Information Theory, Nice, France, June, 2007
Computer Science - Cryptography and Security, Computer Science - Information Theory
Computer Science - Cryptography and Security, Computer Science - Information Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 110 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
