Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
OpenAIRE
Conference object . 2016
Data sources: OpenAIRE
https://doi.org/10.1109/iscas....
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A heterogeneous multi-core system-on-chip for energy efficient brain inspired vision

Authors: Pullini, Antonio; CONTI, FRANCESCO; ROSSI, DAVIDE; LOI, IGOR; Gautschi, Michael; BENINI, LUCA;

A heterogeneous multi-core system-on-chip for energy efficient brain inspired vision

Abstract

Computer vision (CV) based on Convolutional Neural Networks (CNN) is a rapidly developing field thanks to CNN's flexibility, strong generalization capability and classification accuracy (matching and sometimes exceeding human performance). CNN-based classifiers are typically deployed on servers or high-end embedded platforms. However, their ability to “compress” low information density data such as images into highly informative classification tags makes them extremely interesting for wearable and IoT scenarios, should it be possible to fit their computational requirements within deeply embedded devices such as visual sensor nodes. We propose a 65nm system-on-chip implementing a hybrid HW/SW CNN accelerator while meeting this energy efficiency target. The SoC integrates a near-threshold parallel processor cluster [1] and a hardware accelerator for convolution-accumulation operations [2], which constitute the basic kernel of CNNs: it achieves peak performance of 11.2 GMAC/s @ 1.2 V and peak energy efficiency of 261 GMAC/s/W @ 0.65V.

Keywords

Electrical and Electronic Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!