
Various and ubiquitous information systems are being used in monitoring, exchanging, and collecting information. These systems are generating massive amount of event sequence logs that may help us understand underlying phenomenon. By analyzing these logs, we can learn process models that describe system procedures, predict the development of the system, or check whether the changes are expected. In this paper, we consider a novel technique that models these sequences of events in temporal-probabilistic manners. Specifically, we propose a probabilistic process model that combines hidden semi-Markov model and classification trees learning. Our experimental result shows that the proposed approach can answer a kind of question-"what are the most frequent sequence of system dynamics relevant to a given sequence of observable events?". For example, "Given a series of medical treatments, what are the most relevant patients' health condition pattern changes at different times?"
2016 IEEE International Conference on Information Reuse and Integration
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
