
In this paper we use a mathematical approach to automatically generate high performance short vector code for the discrete Fourier transform (DFT). We represent the well-known Cooley-Tukey fast Fourier transform in a mathematical notation and formally derive a "short vector variant". Using this recursion we generate for a given DFT a large number of different algorithms, represented as formulas, and translate them into short vector code. Then we present a vector code specific dynamic programming method that searches in the space of different implementations for the fastest on the given architecture. We implemented this approach as part of the SPIRAL library generator On Pentium III and 4, our automatically generated SSE and SSE2 vector code compares favorably with the hand-tuned Intel vendor library.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
