<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Tree based optimization problems stand for those paradigms where solutions can be arranged within a tree-like graph whose nodes represent the optimization variables of the problem at hand and their interconnecting edges topological and/or hierarchical relationships between such variables. In this context, a research line of increasing interest during the last decade focuses on the derivation of intelligent solution encoding strategies capable of 1) capturing all topological constraints of this particular class of graphs; and 2) preserving their connectivity properties when they undergo combination/mutation operations within approximative evolutionary solvers. This manuscript takes a step over the state of the art by shedding light on the heri-tability properties of the Dandelion tree encoding approach under avant-garde stochastically-controlled evolutionary operators. In particular we elaborate on the topological heritability of the so-called Harmony Memory Considering Rate (HMCR) exploitative operator of the Harmony Search algorithm, a population-based meta-heuristic algorithm that has so far shown to outperform other evolutionary schemes in a wide range of optimization scenarios. Results from extensive Monte Carlo simulations are discussed in terms of the preserved structural properties of the newly produced solutions with respect to the initial Dandelion-encoded population.
Dandelion code, Harmony Search, Tree optimization
Dandelion code, Harmony Search, Tree optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |