
handle: 1721.1/58850
The recently proposed packet switched network paradigm takes advantage of human social contacts to opportunistically create data paths over time. Our goal is to examine the effect of the human contact process on data delivery. We find that the contact occurrence distribution is highly uneven: contacts between a few node-pairs occur too frequently, leading to inadequate mixing in the network, while the majority of contacts are rare, and essential for connectivity. This distribution of contacts leads to a significant variation in performance over short time windows. We discover that the formation of a large clique core during the window is correlated with the fraction of data delivered, as well as the speed of delivery. We then show that the clustering co-efficient of the contact graph over a time window is a good predictor of performance during the window. Taken together, our findings suggest new directions for designing forwarding algorithms in ad-hoc or delay-tolerant networking schemes using humans as data mules.
330, MOBILITY, 004
330, MOBILITY, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
