Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lexical Semantic Relatedness for Twitter Analytics

Authors: Yue Feng; Hossein Fani; Ebrahim Bagheri; Jelena Jovanovic;

Lexical Semantic Relatedness for Twitter Analytics

Abstract

Existing work in the semantic relatedness literature has already considered various information sources such as WordNet, Wikipedia and Web search engines to identify the semantic relatedness between two words. We will show that existing semantic relatedness measures might not be directly applicable to microblogging content such as tweets due to i) the informality and short length of microblogging content, which can lead to shift in the meaning of words when used in microblog posts, ii) the presence of non-dictionary words that have their semantics defined/evolved by the Twitter community. Therefore, we propose the Twitter Space Semantic Relatedness (TSSR) technique that relies on the latent relation hypothesis to measure semantic relatedness of words on Twitter. We construct a graph representation of terms in tweets and apply a random walk procedure to produce a stationary distribution for each word, which is the basis for relatedness calculation. Our experiments examine TSSR from three different perspectives and show that TSSR is better suited for Twitter analytics compared to the standard semantic relatedness techniques.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!