Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IC for neural signal regeneration

Authors: Wenyuan Li; Zhigong Wang;

IC for neural signal regeneration

Abstract

Based on the 4-channels neural signal regeneration system which was realized by using discrete devices and successfully used for in-vivo experiments of rats and rabbits, an integrated circuit (IC) with 6-channels of neural signal regeneration has been designed and realized in CSMC?s 0.6 ?m CMOS technology. The IC consists of a neural signal amplifier with adjustable gain, a buffer stage, and a function electrical stimulation (FES) stage. The neural signal detecting circuit amplifies the detected weak signal come from the electrode to such a voltage that the FES circuit can be driven appropriately. The FES circuit amplifies the signal further so that the neural signal can be regenerated through the stimulating electrode. The neural signal regenerating IC occupies a die area of 2.82 mm×2.00 mm. Under double supply voltages of ±2.5 V, the DC power consumption is less than 50 mW. The on-wafer measurement results are as follows: the output resistor is 118 m?, the 3 dB bandwidth is greater than 30 kHz, and the gain can be variable from 50 dB to 90 dB. The circuit has been used for in-vivo experiments on the rat?s sciatic nerve as well as spinal cord with the cuff type electrode array or a needle twin-electrode, and the neural signal has been regenerated successfully both on a rat?s sciatic nerve bundle and on a spinal cord.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?