Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Semi-Supervised Learning

Authors: Xue-wen Chen; Artem Komarichev; Zeyad Hailat;

Deep Semi-Supervised Learning

Abstract

Convolutional neural networks (CNNs) attain state-of-the-art performance on various classification tasks assuming a sufficiently large number of labeled training examples. Unfortunately, curating sufficiently large labeled training dataset requires human involvement, which is expensive and time consuming. Semi-supervised methods can alleviate this problem by utilizing a limited number of labeled data in conjunction with sufficiently large unlabeled data to construct a classification model. Self-training techniques are among the earliest semi-supervised methods proposed to enhance learning by utilizing unlabeled data. In this paper, we propose a deep semi-supervised learning (DSSL) self-training method that utilizes the strengths of both supervised and unsupervised learning within a single model. We measure the efficacy of the proposed method on semi-supervised visual object classification tasks using the datasets CIFAR-10, CIFAR-100, STL-10, MNIST, and SVHN. The experiments show that DSSL surpasses semi-supervised state-of-the-art methods for most of the aforementioned datasets.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?