
This paper describes the application of several data mining approaches to solve a calibration problem in a quantitative chemistry environment. Experimental data obtained from reactions which involve known concentrations of two or more components are used to calibrate a model that, later, will be used to predict the (unknown) concentrations of those components in a new reaction. This problem can be seen as a selection + prediction one, where the goal is to obtain good values for the variables to predict while minimizing the number of the input variables needed, taking a small subset of really significant ones. Initial approaches to the problem were principal components analysis and filtering. Then we used methods to make smarter reductions of variables, by means of parallel estimation of distribution algorithms (EDAs) to choose collections of variables that yield models with less average prediction errors. A final step was to use multiobjective parallel EDAs, in order to present a set of optimal solutions instead of a single solution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
