
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Link-state routing protocols, such as OSPF and IS-IS, are widely used on the Internet. In link-state routing protocols, global network topology is first collected at each node. A shortest path tree (SPT) is then constructed by applying Dijkstra's shortest path algorithm at each node. Link-state protocols normally require the flooding of new information to the entire (sub)network after changes in any link state (including link faults). Narvaez et al. (2000) proposed a fault-tolerant link-state routing protocol without flooding. The idea is to construct a shortest restoration path for each uni-directional link fault. Faulty link information is distributed only to the nodes in the restoration path and only one restoration path is constructed. It is shown that this approach is loop-free. However, the approach of Narvaez et al. is inefficient when a link failure is bi-directional, because a restoration path is uni-directional and routing tables of nodes in the path are partially updated. In addition, two restoration paths may be generated for each bi-directional link fault. We extend the Narvaez protocol to efficiently handle a bi-directional link fault by making the restoration path bi-directional. Several desirable properties of the proposed extended routing protocol are also explored.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
