Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An extended fault-tolerant link-state routing protocol on the Internet

Authors: Weijia Jia; Xiaola Lin; Jiannong Cao; Jie Wu;

An extended fault-tolerant link-state routing protocol on the Internet

Abstract

Link-state routing protocols, such as OSPF and IS-IS, are widely used on the Internet. In link-state routing protocols, global network topology is first collected at each node. A shortest path tree (SPT) is then constructed by applying Dijkstra's shortest path algorithm at each node. Link-state protocols normally require the flooding of new information to the entire (sub)network after changes in any link state (including link faults). Narvaez et al. (2000) proposed a fault-tolerant link-state routing protocol without flooding. The idea is to construct a shortest restoration path for each uni-directional link fault. Faulty link information is distributed only to the nodes in the restoration path and only one restoration path is constructed. It is shown that this approach is loop-free. However, the approach of Narvaez et al. is inefficient when a link failure is bi-directional, because a restoration path is uni-directional and routing tables of nodes in the path are partially updated. In addition, two restoration paths may be generated for each bi-directional link fault. We extend the Narvaez protocol to efficiently handle a bi-directional link fault by making the restoration path bi-directional. Several desirable properties of the proposed extended routing protocol are also explored.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?