
The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct a vectorial ordering, nonlocal configurations based on color patches can be easily handled and provide much better results than with classical local morphological approaches.
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
