
Galerkin-Bubnov Integral Boundary Element Method (GB-lBEM) is used to model transient phenomena on thin wire structures directly in the time domain. One of the most prominent limitations of the method is the inability to deal with the structures above finally conducting half plane, due to the high computational inefficiency when ground losses are accounted for in the numerical model. In this paper, this problem is tackled via various modifications, in order to optimize GB-IBEM with respect to the computational speed. These optimizations of the original method result in several orders of magnitude improvement in the overall calculation time, allowing GB-IBEM to be used with geometries above lossy ground.
GB-IBEM, computational efficiency, integral equation methods, GB-IBEM; integral equation methods; time domain analysis; optimization; computational efficiency, time domain analysis, optimization
GB-IBEM, computational efficiency, integral equation methods, GB-IBEM; integral equation methods; time domain analysis; optimization; computational efficiency, time domain analysis, optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
