Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electric breakdown in liquid nitrogen

Authors: H.G. Krompholz; M. Haustein; Andreas A. Neuber; James C. Dickens;

Electric breakdown in liquid nitrogen

Abstract

The phenomenology of breakdown in liquid nitrogen is investigated with high-speed electrical and optical diagnostics (temporal resolution down to several 100 ps). The discharge apparatus uses a cable discharge into a coaxial system with axial discharge, and a load line to simulate a matched terminating impedance. Main experiments are done in self-breakdown mode in supercooled liquid nitrogen. Transmission line type current sensors and capacitive voltage dividers with fast amplifiers/attenuators cover an amplitude range of 0.1 mA to 1 kA with a time resolution of 300 ps, providing complete information about discharge voltage and current. The light emission is measured with fast photomultiplier tubes (risetime 800 ps), and these optical measurements will be supplemented by high-speed photography and spectroscopic investigations on a nanosecond time scale. First results on self-breakdown with a gap width of 1 mm and electrodes with 5 mm radius of curvature (breakdown voltage 42 kV) show a three-phase development: the current rises from an unknown level to several mA during 2 ns, stays approximately constant for 100 ns with superimposed ns-duration spikes, and shows a final exponential rise to the full impedance limited current amplitude during several nanoseconds. Detailed optical and spectroscopic diagnostics along with the high-speed electrical diagnostics will in particular address the physical mechanisms initiating/assisting the liquid nitrogen volume breakdown, such as bubble formation during the pre-breakdown phase.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?