Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://ntnuopen.ntn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Norwegian Open Research Archives
Part of book or chapter of book . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NTNU Open
Part of book or chapter of book . 2016
Data sources: NTNU Open
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Munin - Open Research Archive
Article . 2016 . Peer-reviewed
https://doi.org/10.1109/hpcsim...
Article . 2016 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: CC BY NC SA
Data sources: Datacite
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the performance and energy efficiency of the PGAS programming model on multicore architectures

Authors: Lagraviere, Jeremie; Langguth, Johannes; Sourouri, Mohammed; Ha, Phuong H.; Cai, Xing;

On the performance and energy efficiency of the PGAS programming model on multicore architectures

Abstract

Using large-scale multicore systems to get the maximum performance and energy efficiency with manageable programmability is a major challenge. The partitioned global address space (PGAS) programming model enhances programmability by providing a global address space over large-scale computing systems. However, so far the performance and energy efficiency of the PGAS model on multicore-based parallel architectures have not been investigated thoroughly. In this paper we use a set of selected kernels from the well-known NAS Parallel Benchmarks to evaluate the performance and energy efficiency of the UPC programming language, which is a widely used implementation of the PGAS model. In addition, the MPI and OpenMP versions of the same parallel kernels are used for comparison with their UPC counterparts. The investigated hardware platforms are based on multicore CPUs, both within a single 16-core node and across multiple nodes involving up to 1024 physical cores. On the multi-node platform we used the hardware measurement solution called High definition Energy Efficiency Monitoring tool in order to measure energy. On the single-node system we used the hybrid measurement solution to make an effort into understanding the observed performance differences, we use the Intel Performance Counter Monitor to quantify in detail the communication time, cache hit/miss ratio and memory usage. Our experiments show that UPC is competitive with OpenMP and MPI on single and multiple nodes, with respect to both the performance and energy efficiency.

Country
Norway
Keywords

Performance (cs.PF), FOS: Computer and information sciences, VDP::Mathematics and natural science: 400::Information and communication science: 420, Computer Science - Performance, Computer Science - Programming Languages, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Programming Languages (cs.PL)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green