<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
System self-tuning is a crucial task to lower the energy consumption of computers. Traditional approaches decrease the processor frequency in idle or synchronisation periods. However, in High-Performance Computing (HPC) this is not sufficient: if the executed code is load balanced, there are neither idle nor synchronisation phases that can be exploited. Therefore, alternative self-tuning approaches are needed, which allow exploiting different compute characteristics of HPC programs. The novel notion of application regions based on function call stacks, introduced in the Horizon 2020 Project READEX, allows us to define such a self-tuning approach. In this paper, we combine these regions with the Q-Learning typical state-action maps, which save information about available states, possible actions to take, and the expected rewards. By exploiting the existing processor power interface, we are able to provide direct feedback to the learning process. This approach allows us to save up to 15% energy, while only adding a minor runtime overhead.
4 pages short paper, HPCS 2019, AHPC 2019, READEX, HAEC, Horizon2020, H2020 grant agreement number 671657, DFG, CRC 912
Performance (cs.PF), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Performance, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Machine Learning (cs.LG)
Performance (cs.PF), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Performance, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |