Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Components and Packaging Technologies
Article . 2002 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/holm.2...
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal simulation of switchgear

Authors: P. Steinhaeuser; J. Paulke; Hans Weichert;

Thermal simulation of switchgear

Abstract

In development of low voltage switchgear, proper thermal design becomes more and more important to provide safe function and reliability in spite of miniaturization and increasing performance demanded of modern devices. Due to the high complexity of heat generation and loss processes it is not easy to predict the thermal behavior of devices under various load conditions, i.e., usually numerous tests are required. Rockwell Automation has started thermal simulations of contactors some time ago, and now is working on a three-dimensional (3-D) thermal model of a manual motor controller. This paper describes how to transform well known contact physics into an application oriented thermal simulation. Linking relations of mechanical engineering with contact physics, the influence of the applied tightening torque at the field wiring terminals on the thermal behavior of the device is considered, as well as the modeling of the contact area, taking into account switching arcs during breaking of various load currents. The simulation results are compared with infrared (IR) pictures and thermocouple measurements of existing devices to validate the theory and furthermore reflect its quality.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 1%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?