Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Reposi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/fccm.2...
Article . 2007 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

A Fast FPGA-Based 2-Opt Solver for Small-Scale Euclidean Traveling Salesman Problem

Authors: Παπαευσταθιου Ιωαννης(http://users.isc.tuc.gr/~ipapaefstathiou); Papaefstathiou Ioannis(http://users.isc.tuc.gr/~ipapaefstathiou); Πνευματικατος Διονυσιος(http://users.isc.tuc.gr/~dpnevmatikatos); Pnevmatikatos Dionysios(http://users.isc.tuc.gr/~dpnevmatikatos); Mavroidis I.();

A Fast FPGA-Based 2-Opt Solver for Small-Scale Euclidean Traveling Salesman Problem

Abstract

Summarization: In this paper we discuss and analyze the FPGA-based implementation of an algorithm for the traveling salesman problem (TSP), and in particular of 2-Opt, one of the most famous local optimization algorithms, for Euclidean TSP instances up to a few hundred cities. We introduce the notion of "symmetrical 2-Opt moves" which allows us to uncover fine-grain parallelism when executing the specified algorithm. We propose a novel architecture that exploits this parallelism, and demonstrate its implementation in reconfigurable hardware. We evaluate our proposed architecture and its implementation on a state-of-the-art FPGA using a subset of the TSPLIB benchmark, and find that our approach exhibits better quality of final results and an average speedup of 600% when compared with the state-of-the-art software implementation. Our approach produces, to the best of our knowledge, the fastest to date TSP 2-Opt solver for small-scale Euclidean TSP instances.

Παρουσιάστηκε στο: 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

Country
Greece
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 10%
Average
Green