
doi: 10.1109/fccm.2007.40
Summarization: In this paper we discuss and analyze the FPGA-based implementation of an algorithm for the traveling salesman problem (TSP), and in particular of 2-Opt, one of the most famous local optimization algorithms, for Euclidean TSP instances up to a few hundred cities. We introduce the notion of "symmetrical 2-Opt moves" which allows us to uncover fine-grain parallelism when executing the specified algorithm. We propose a novel architecture that exploits this parallelism, and demonstrate its implementation in reconfigurable hardware. We evaluate our proposed architecture and its implementation on a state-of-the-art FPGA using a subset of the TSPLIB benchmark, and find that our approach exhibits better quality of final results and an average speedup of 600% when compared with the state-of-the-art software implementation. Our approach produces, to the best of our knowledge, the fastest to date TSP 2-Opt solver for small-scale Euclidean TSP instances.
Παρουσιάστηκε στο: 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
