<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A cordless battery charger will greatly improve the user friendliness of electric vehicles (EVs), accelerating the replacement of traditional internal combustion engine (ICE) vehicles with EVs and improving energy sustainability as a result. Resonant circuits are used for both the power transmitter and receiver of a cordless charger to compensate their coils and improve power transfer efficiency. However, conventional compensation circuit topology is not suitable for application to an EV, which involves very large power, a wide gap between the transmitter and receiver coils, and large horizontal misalignment. This paper proposes a novel compensation circuit topology that has a carefully designed series capacitor added to the parallel resonant circuit of the receiver. The proposed circuit has been implemented and tested on an EV. The simulation and experimental results are presented to show that the circuit can improve the power factor and power transfer efficiency, and as a result, allow a larger gap between the transmitter and receiver coils.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |