
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1109/dsd.2016.106
ExaNest is one of three European projects that support a ground-breaking computing architecture for exascale-class systems built upon power-efficient 64-bit ARM processors. This group of projects share an "everything-close" and "share-anything" paradigm, which trims down the power consumption -- by shortening the distance of signals for most data transfers -- as well as the cost and footprint area of the installation -- by reducing the number of devices needed to meet performance targets. In ExaNeSt, we will design and implement: (i) a physical rack prototype and its liquid-cooling subsystem providing ultra-dense compute packaging, (ii) a storage architecture with distributed (in-node) non-volatile memory (NVM) devices, (iii) a unified, low-latency interconnect, designed to efficiently uphold desired Quality-of-Service guarantees for a mix of storage with inter-processor flows, and (iv) efficient rack-level memory sharing, where each page is cacheable at only a single node. Our target is to test alternative storage and interconnect options on actual hardware, using real-world HPC applications. The ExaNeSt consortium brings together technology, skills, and knowledge across the entire value chain, from computing IP, packaging, and system deployment, all the way up to operating systems, storage, HPC, big data frameworks, and cutting-edge applications.
Horizon 2020, Euratom, Euratom research and training programme 2014-2018, European Union (EU)
Horizon 2020, Euratom, Euratom research and training programme 2014-2018, European Union (EU)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 10 | |
downloads | 22 |