
This paper addresses the problem of segmenting an image into regions consistent with user-supplied seeds (e.g., a sparse set of broad brush strokes). We view this task as a statistical transductive inference, in which some pixels are already associated with given zones and the remaining ones need to be classified. Our method relies on the Laplacian graph regularizer, a powerful manifold learning tool that is based on the estimation of variants of the Laplace-Beltrami operator and is tightly related to diffusion processes. Segmentation is modeled as the task of finding matting coefficients for unclassified pixels given known matting coefficients for seed pixels. The proposed algorithm essentially relies on a high margin assumption in the space of pixel characteristics. It is simple, fast, and accurate, as demonstrated by qualitative results on natural images and a quantitative comparison with state-of-the-art methods on the Microsoft GrabCut segmentation database.
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 86 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
