
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>In this paper we present a methodology for detecting web crawlers in real time. We use decision trees to classify requests in real time, as originating from a crawler or human, while their session is ongoing. For this purpose we used machine learning techniques to identify the most important features that differentiate humans from crawlers. The method was tested in real time with the help of an emulator, using only a small number of requests. Our results demonstrate the effectiveness and applicability of our approach.
Real time, User interfaces, Web crawlers, Decision trees, Telecommunication, Information technology, Machine learning techniques
Real time, User interfaces, Web crawlers, Decision trees, Telecommunication, Information technology, Machine learning techniques
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
