Downloads provided by UsageCounts
handle: 10016/34568
Different kinds of user-generated data are increasingly used to tailor and optimize, through Machine Learning, the operation of online services and infrastructures. This typically requires sharing data among different partners, often including private data of individuals or business confidential data. While this poses privacy issues, the current state-of-the-art solutions either impose strong assumptions on the usage scenario or drastically reduce the data quality. In this paper, we evaluate through a generic framework the trade-offs between the accuracy of Machine Learning tasks and the achieved privacy (measured as similarity) on the input data, discussing trends and ways forward.
Machine Learning, Telecomunicaciones, Privacy, Trade offs
Machine Learning, Telecomunicaciones, Privacy, Trade offs
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 12 | |
| downloads | 530 |

Views provided by UsageCounts
Downloads provided by UsageCounts