<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Which problems a search algorithm can effectively solve is a fundamental issue that plays a key role in understanding and developing algorithms. In order to study the ability limit of estimation of distribution algorithms (EDAs), this paper experimentally tests three different EDA implementations on a sequence of additively decomposable functions (ADFs) with an increasing number of interactions among binary variables. The results show that the ability of EDAs to solve problems could be lost immediately when the degree of variable interaction is larger than a threshold. We argue that this phase-transition phenomenon is closely related with the computational restrictions imposed in the learning step of this type of algorithms. Moreover, we demonstrate how the use of unrestricted Bayesian networks rapidly becomes inefficient as the number of sub-functions in an ADF increases. The study conducted in this paper is useful in order to identify patterns of behavior in EDAs and, thus, improve their performances.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |