Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic algorithm based gain scheduling

Authors: B. Kimiaghalam; A. Homaifar; M. Bikdash; B. Sayyarrodsari;

Genetic algorithm based gain scheduling

Abstract

We designed a feedforward control law that greatly decreases the load sway of a shipboard crane due to ship rolling. This feedforward control uses measurements of ship rolling angle at each instant. At different operating points the optimal feedforward gain changes while is numerically computable. Here, we propose to use a genetic algorithm (GA) based approach to optimize the mapping of feedforward gain in four dimensional space. The process is based on the numerical calculation of the optimal feedforward gain for any rolling angle (/spl rho/), length of the rope (L), and luffing angle (/spl delta//sub 0/). The optimal gain is calculated for a group of points in the working space and then fit a function of order n to these points in a four dimensional space. Our choice for this problem includes real value GA with a combination of different crossover methods. The cost function is the sum of squared errors at selected points and we aim to minimize it. Since moving the load to another location also changes the optimal gain, the new improved gain scheduling further reduces the swinging within the whole working space. GA is a directed search method and is capable of searching for variables of functions with any desired structure. The major advantages of using GA for function mappings is that the function does not have to be linear or in any specific form.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!