
arXiv: 1209.1330
We prove a Noether type symmetry theorem to fractional problems of the calculus of variations with classical and Riemann-Liouville derivatives. As result, we obtain constants of motion (in the classical sense) that are valid along the mixed classical/fractional Euler-Lagrange extremals. Both Lagrangian and Hamiltonian versions of the Noether theorem are obtained. Finally, we extend our Noether's theorem to more general problems of optimal control with classical and Riemann-Liouville derivatives.
This is a preprint of a paper whose final and definite form will be published in: 51st IEEE Conference on Decision and Control, December 10-13, 2012, Maui, Hawaii, USA. Article Source/Identifier: PLZ-CDC12.1832.45c07804. Submitted 08-March-2012; accepted 17-July-2012. arXiv admin note: text overlap with arXiv:1001.4507
Optimization and Control (math.OC), 49K05, 26A33, FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), 49K05, 26A33, FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
