
handle: 11583/2477981
Set-membership identification of Hammerstein-Wiener models is addressed in the paper. First, it is shown that computation of tight parameter bounds requires the solutions to a number of nonconvex constrained polynomial optimization problems where the number of decision variables increases with the length of the experimental data sequence. Then, a suitable convex relaxation procedure is presented to significantly reduce the computational burden of the identification problem. A detailed discussion of the identification algorithm properties is reported. Finally, a simulated example is used to show the effectiveness and the computational tractability of the proposed approach.
QA75 Electronic computers. Computer science
QA75 Electronic computers. Computer science
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
