
Consider a sub-Riemannian geometry (U,/spl Delta/,g) where U is a neighborhood of 0 in R/sup n/, /spl Delta//spl sub/TR/sup n/ a distribution of constant rank m and g a Riemannian metric defined on /spl Delta/. One of the main questions related to a given sub-Riemannian structure is the description of the conjugate and cut loci, of the sphere and the wave front. The paper deals with numerical methods, and more precisely it focuses on the numerical computations of the wave front, the sphere and the conjugate points. The algorithms are illustrated on the following sub-Riemannian structures: the Martinet case and the Tangential case (in particular we verify numerically the sub-analyticity of the elliptic sphere and conjecture the non sub-analyticity of the hyperbolic one).
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
