
Differential evolutionary algorithm (DE) is a practical and simple intelligent algorithm. Its improvement and application in multi objective problem is the main research of this paper. To improve the convergence speed and stability of DE, and use it to solve multi-objective problems, the mixed mutation strategy, self-adaptive parameters and minimum neighbor distance are used in this paper, aimed for better performance of the algorithm. Combining with these ideals, the multi-objective self-adaptive differential evolution (MOSDE) proposed in this paper is used so solve benchmark test functions and be compared with the SPEA2. The optimization of hybrid electric vehicle (HEV) is a nonlinear and constrained multi-objective optimization problem. For low consumption of fuel and emission load, we use the MOSDE to optimize some components’ parameters and control strategy variables, and provide the best compromise solution from the Pareto solution set.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
