Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biomechanical analysis of facet joint slippage of lumbosacral joints under static loadings

Authors: Li-Xin Guo; Ming Zhang;

Biomechanical analysis of facet joint slippage of lumbosacral joints under static loadings

Abstract

In this study, three-dimensional laser scanning technology was employed to measure geometrical data of the human spine vertebrae. Based on the measured point-cloud data of the vertebra figuration, a detailed three-dimensional nonlinear finite element model of the lumbosacral joint L5-S1 of the spine was created and used to investigate the biomechanical properties of the lumbosacral joint. The finite element model was finely developed and validated according to available experimental results. The results show that facet articulations are important to stability of the lumbosacral joint. 1000N compressive force or 100N anterior force may yield the facet joint slippage for around 1mm and the facet contact surfaces may slip for around 2.8mm under both of 10Nm extension moment and 1000N compressive force. The finite element model might provide a detailed and accurate computational model for biomechanical analyses of the lumbosacral joint and studies of relative instrument implant and individual design of instruments.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!