Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallel in-memory trajectory-based spatiotemporal topological join

Authors: Rolando Blanco; Nick Koudas; Angela Demke Brown; Suprio Ray; Anil Kumar Goel;

Parallel in-memory trajectory-based spatiotemporal topological join

Abstract

The rapid growth of spatiotemporal Big Data is fueling the emergence and growth of many applications. Many of these applications are characterized by complex spatiotemporal queries. An important category of such queries is the trajectory-based spatiotemporal topological join queries, which combine a trajectory dataset and a spatial objects dataset based on spatiotemporal predicates. Although these queries have many important use-cases, they have not received much attention from the research community. We systematically evaluate several feasible in-memory spatiotemporal topological join algorithms, using existing trajectory index (TB-tree) and spatial index (STR). We show that even the best among these algorithms is long running and not scalable. To address the performance problems of these algorithms we introduce PISTON, a parallel in-memory indexing system targeted for spatiotemporal topological join. With extensive evaluations, we demonstrate that even the single-threaded performance of PISTON is significantly better than the feasible approaches that use existing trajectory and spatial indexes. Moreover, the parallel performance of PISTON is orders of magnitude better than these approaches.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!