
The agricultural sector is still a major provider of many countries’ economies, but diseases that continuously infect plants represent continuous threats to agriculture and cause massive losses to the country’s economy. In this study, a faster and lightweight tomato leaves diseases detection model was proposed for tomato disease classification based on a soft attention mechanism with a depth-wise separable convolution layer. With a model size of 2.5 MB and 221,594 trainable parameters, the proposed model achieved 99.5%, 99.10%, 99.04% for training, validation and testing accuracy respectively, and 99 % for each of precision, recall, and f1-score, it also achieved 99.90% for ROC-AUC with average inference time of $2.06924~\mu $ s. The proposed model outperformed Ulutaş and Aslantaş (2023) by 2.2% in terms of accuracy, precision, recall and f1-score. Additionally, it performed better than Agarwal (2023), Abbas (2021), and Verma (2020) in terms of accuracy, precision, recall, and f1-score by 8%, 2%, and 6%, respectively. It also outperformed Arshad (2023) by 4.77%, 8.92%, 35.18% and 5.11% in terms of accuracy, precision, recall and f1-score, respectively. Furthermore, the proposed model is 90 times smaller than Verma (2020) and 2.5 times smaller than Ulutaş and Aslantaş (2023) in terms of model size. All this makes the proposed model more suitable for low-end devices in precision agriculture.
Computer and Systems Architecture, precision agriculture, deep learning, tomato, 630, TK1-9971, soft attention, classification, Convolutional neural networks, Electrical engineering. Electronics. Nuclear engineering, Digital Communications and Networking
Computer and Systems Architecture, precision agriculture, deep learning, tomato, 630, TK1-9971, soft attention, classification, Convolutional neural networks, Electrical engineering. Electronics. Nuclear engineering, Digital Communications and Networking
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
