Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Output Regulation-Based Optimal Control System for Maximum Power Extraction of a Machine-Side Power Converter in Variable-Speed WECS

Authors: Bayandy Sarsembayev; Nurkhat Zhakiyev; Alman Kushekkaliyev; Korhan Kayisli; Ton Duc Do;

Output Regulation-Based Optimal Control System for Maximum Power Extraction of a Machine-Side Power Converter in Variable-Speed WECS

Abstract

In this study, the integral linear quadratic regulator (LQR) with servomechanism for machine-side power converter in PMSG-based variable-speed wind energy conversion systems (WECSs) has been proposed. The solution of the algebraic Riccati equation (ARE) has been found for the extended dimension of the state space equation of the system. The state vector has been extended with the integral of the angular shaft speed of the permanent magnet synchronous generator (PMSG) to penalize the errors. The maximum power tracking point (MPPT) algorithm is achieved by minimizing tracking errors between the angular shaft speed reference based on wind speed estimation and its actual values in the variable speed WECS. Also, the estimated aerodynamic torque is used to define the reference electromagnetic torque. This is possible when WECS is partially loaded and pitches angles are fixed at the position to generate maximum power. The mean absolute percentage error of the angular shaft speed of the PMSG-based WECS has been reduced by more than 71% under model uncertainty and noise presented case than in the traditional disturbance observers-based compensation scheme. While the disturbance observers for estimation model uncertainty are eliminated, the use of the high order disturbance observer for aerodynamic torque estimation proved to be necessary to enhance the reliability of wind speed sensors and hence the whole WECS.

Keywords

optimal tip speed ratio (TCR), permanent magnet synchronous generator (PMSG), integral servomechanism-based control, linear output feedback controller, Electrical engineering. Electronics. Nuclear engineering, linear quadratic regulator (LQR), Wind energy conversion system (WECS), TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold