Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/9s...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/kz...
Other literature type . 2022
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solving the Mesh Router Nodes Placement in Wireless Mesh Networks Using Coyote Optimization Algorithm

حل وضع عقد جهاز التوجيه الشبكي في الشبكات الشبكية اللاسلكية باستخدام خوارزمية تحسين القيوط
Authors: Sylia Mekhmoukh Taleb; Yassine Meraihi; Asma Benmessaoud Gabis; Seyedali Mirjalili; Atef Zaguia; Amar Ramdane-Cherif;

Solving the Mesh Router Nodes Placement in Wireless Mesh Networks Using Coyote Optimization Algorithm

Abstract

Las redes de malla inalámbrica (WMN) han tenido rápidos desarrollos reales durante la última década debido a su simple implementación a bajo costo, fácil mantenimiento de la red y cobertura de servicio confiable. A pesar de estas propiedades, la colocación de nodos de tales redes impone un importante problema de investigación para los operadores de redes e influye fuertemente en el rendimiento de las WMN. Se sabe que este problema desafiante es un problema NP-duro, y resolverlo utilizando algoritmos de optimización aproximados (es decir, heurísticos y metaheurísticos) es esencial. Esto motiva nuestros intentos de presentar una aplicación del algoritmo de optimización de coyotes (COA) para resolver el problema de colocación de enrutadores de malla en WMN en este trabajo. Los experimentos se llevan a cabo en varios escenarios bajo diferentes configuraciones, teniendo en cuenta dos métricas importantes, como la conectividad de red y la cobertura del usuario. Los resultados de la simulación demuestran la efectividad y los méritos del COA para encontrar ubicaciones óptimas de enrutadores de malla en comparación con otros algoritmos de optimización como el algoritmo Firefly (FA), la optimización de enjambre de partículas (PSO), el algoritmo de optimización de ballenas (WOA), el algoritmo genético (GA), el algoritmo de murciélagos (BA), el algoritmo de optimización de buitres africanos (AVOA), el optimizador de Aquila (AO), la optimización de búsqueda de águilas calvas (BES), el optimizador de inmunidad de rebaño de coronavirus (CHIO) y el algoritmo de enjambre de salpas (SSA).

Les réseaux maillés sans fil (WMN) ont connu des développements réels rapides au cours de la dernière décennie en raison de leur mise en œuvre simple à faible coût, de leur maintenance facile et de leur couverture de service fiable. Malgré ces propriétés, le placement des nœuds de ces réseaux impose un problème de recherche important pour les opérateurs de réseau et influence fortement les performances des WMN. Ce problème difficile est connu pour être un problème NP difficile, et sa résolution à l'aide d'algorithmes d'optimisation approximatifs (c'est-à-dire heuristiques et méta-heuristiques) est essentielle. Cela motive nos tentatives de présenter une application de l'algorithme d'optimisation de Coyote (COA) pour résoudre le problème de placement des routeurs maillés dans les WMN dans ce travail. Les expériences sont menées sur plusieurs scénarios dans différents contextes, en tenant compte de deux paramètres importants tels que la connectivité réseau et la couverture des utilisateurs. Les résultats de la simulation démontrent l'efficacité et les mérites du CoA dans la recherche d'emplacements optimaux de routeurs maillés par rapport à d'autres algorithmes d'optimisation tels que Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), Bat Algorithm (BA), African Vulture Optimization Algorithm (AVOA), Aquila Optimizer (AO), Bald Eagle Search Optimization (BES), Coronavirus herd immunity Optimizer (CHIO) et Salp Swarm Algorithm (SSA).

Wireless Mesh Networks (WMNs) have rapid real developments during the last decade due to their simple implementation at low cost, easy network maintenance, and reliable service coverage. Despite these properties, the nodes placement of such networks imposes an important research issue for network operators and influences strongly the WMNs performance. This challenging issue is known to be an NP-hard problem, and solving it using approximate optimization algorithms (i.e. heuristic and meta-heuristic) is essential. This motivates our attempts to present an application of the Coyote Optimization Algorithm (COA) to solve the mesh routers placement problem in WMNs in this work. Experiments are conducted on several scenarios under different settings, taking into account two important metrics such as network connectivity and user coverage. Simulation results demonstrate the effectiveness and merits of COA in finding optimal mesh routers locations when compared to other optimization algorithms such as Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), Bat Algorithm (BA), African Vulture Optimization Algorithm (AVOA), Aquila Optimizer (AO), Bald Eagle Search optimization (BES), Coronavirus herd immunity optimizer (CHIO), and Salp Swarm Algorithm (SSA).

تتمتع الشبكات الشبكية اللاسلكية (WMNs) بتطورات حقيقية سريعة خلال العقد الماضي بسبب تنفيذها البسيط بتكلفة منخفضة وسهولة صيانة الشبكة وتغطية خدمة موثوقة. على الرغم من هذه الخصائص، فإن وضع العقد لهذه الشبكات يفرض مشكلة بحثية مهمة لمشغلي الشبكات ويؤثر بقوة على أداء شبكات WMN. من المعروف أن هذه المشكلة الصعبة هي مشكلة صعبة NP، وحلها باستخدام خوارزميات التحسين التقريبية (أي الاستدلال والاستدلال التلوي) أمر ضروري. وهذا يحفز محاولاتنا لتقديم تطبيق لخوارزمية تحسين القيوط (COA) لحل مشكلة وضع الموجهات الشبكية في شبكات WMN في هذا العمل. يتم إجراء التجارب على عدة سيناريوهات في ظل إعدادات مختلفة، مع مراعاة مقياسين مهمين مثل اتصال الشبكة وتغطية المستخدم. توضح نتائج المحاكاة فعالية ومزايا COA في العثور على مواقع أجهزة توجيه الشبكة المثلى عند مقارنتها بخوارزميات التحسين الأخرى مثل خوارزمية Firefly (FA)، وتحسين سرب الجسيمات (PSO)، وخوارزمية تحسين الحيتان (WOA)، والخوارزمية الجينية (GA)، وخوارزمية الخفافيش (BA)، وخوارزمية تحسين النسور الأفريقية (AVOA)، ومحسن Aquila (AO)، وتحسين بحث النسر الأصلع (BES)، ومحسن مناعة القطيع لفيروس كورونا (CHIO)، وخوارزمية سرب Salp (SSA).

Country
France
Keywords

Ad Hoc Wireless Networks Research, Cross-Layer Optimization, Artificial intelligence, Computer Networks and Communications, network design, Heuristic, Firefly algorithm, Wireless Mesh Networks, Wireless Communication and Network Optimization, Engineering, Cooperative Diversity in Wireless Networks, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, [INFO]Computer Science [cs], Electrical and Electronic Engineering, Optimization problem, Multi-hop Wireless Routing, Wireless mesh network, Network Coding, Wireless network, Security in Wireless Networks, Computer network, Coyote optimization algorithm, Particle swarm optimization, Router, Mathematical optimization, mesh router nodes placement, Computer science, Distributed computing, wireless mesh networks, TK1-9971, Algorithm, meta-heuristics, Computer Science, Physical Sciences, Wireless, Telecommunications, Electrical engineering. Electronics. Nuclear engineering, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
gold