Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
https://dx.doi.org/10.60692/wt...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/m5...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on Cooperative Trajectory Planning Algorithm Based on Tractor-Trailer Wheeled Robot

بحث حول خوارزمية تخطيط المسار التعاوني بناءً على روبوت بعجلات مقطورة جرار
Authors: Guannan Lei; Yinqiang Zheng;

Research on Cooperative Trajectory Planning Algorithm Based on Tractor-Trailer Wheeled Robot

Abstract

Le robot à roues tracteur-remorque (TTWR) est un système de robot mobile modulaire typique. Il est largement utilisé dans l'industrie et le transport agricole en raison de sa structure simple, de sa charge lourde, de son rendement élevé, de sa forte adaptabilité et de sa flexibilité. Parce qu'il s'agit d'un système non linéaire et sous-actionné soumis à des contraintes non holonomiques, la complexité du système et l'influence de la différence de roue intérieure posent de grands défis à sa prédiction de trajectoire et à sa planification de trajectoire. Pour résoudre ce problème, cet article propose un algorithme de prédiction de trajectoire pour une remorque non motorisée. pour le système TTWR. Contrairement à la planification traditionnelle à trajet unique, l'algorithme combine les caractéristiques de mouvement du tracteur à châssis Ackermann, analyse la loi de mouvement de la remorque et prend pleinement en compte la déviation latérale de la remorque pendant le processus de virage. L'algorithme peut planifier un trajet coopératif raisonnable pour le système TTWR. Pour vérifier la faisabilité et l'efficacité de l'algorithme, l'algorithme est transplanté sur la plate-forme expérimentale intelligente TTWR. Une comparaison des résultats de simulation et expérimentaux montre que, sous le contrôle de l'algorithme de suivi de prévisualisation, l'erreur maximale entre la trajectoire réelle de la remorque et la trajectoire prédite par l'algorithme ne dépasse généralement pas 9 cm, et l'erreur moyenne est de 3,7 cm. Cet algorithme peut fournir une base efficace pour la planification de la trajectoire du système TTWR et le suivi du chemin. Cet algorithme est d'une grande importance pour les TTWR dans la logistique d'entreposage, l'expédition de fret et le transport par dérapage.

El robot de ruedas tractor-remolque (TTWR) es un sistema de robot móvil modular típico. Es ampliamente utilizado en el transporte industrial y agrícola debido a su estructura simple, carga pesada, alta eficiencia, fuerte adaptabilidad y flexibilidad. Debido a que es un sistema no lineal y poco accionado sujeto a restricciones no holonómicas, la complejidad del sistema y la influencia de la diferencia de la rueda interior plantean grandes desafíos para su predicción de trayectoria y planificación de trayectoria. Para resolver este problema, este documento propone un algoritmo de predicción de trayectoria para un remolque sin motor para el sistema TTWR. En contraste con la planificación tradicional de una sola ruta, el algoritmo combina las características de movimiento del tractor de chasis Ackermann, analiza la ley de movimiento del remolque y considera completamente la desviación lateral del remolque durante el proceso de giro. El algoritmo puede planificar una ruta cooperativa razonable para el sistema TTWR. Para verificar la viabilidad y efectividad del algoritmo, el algoritmo se trasplanta a la plataforma experimental inteligente TTWR. Una comparación de la simulación y los resultados experimentales muestra que bajo el control del algoritmo de seguimiento de vista previa, el error máximo entre la trayectoria real del remolque y la trayectoria predicha por el algoritmo generalmente no es superior a 9 cm, y el error promedio es de 3,7 cm. Este algoritmo puede proporcionar una base efectiva para la planificación de la trayectoria del sistema TTWR y el seguimiento de la trayectoria. Este algoritmo es de gran importancia para los TTWR en la logística de almacenamiento, el envío de carga y el transporte de derrape.

The tractor-trailer wheeled robot (TTWR) is a typical modular mobile robot system.It is widely used in industry and agriculture transportation because of its simple structure, heavy load, high efficiency, strong adaptability, and flexibility.Because it is a nonlinear and underactuated system subjected to nonholonomic constraints, the complexity of the system and influence of the inner wheel difference pose great challenges to its trajectory prediction and path planning.To solve this problem, this paper proposes a trajectory prediction algorithm for an unpowered trailer for the TTWR system.In contrast to traditional single-path planning, the algorithm combines the motion characteristics of the Ackermann chassis tractor, analyzes the trailer motion law, and fully considers the lateral deviation of the trailer during the turning process.The algorithm can plan a reasonable cooperative path for the TTWR system.To verify the feasibility and effectiveness of the algorithm, the algorithm is transplanted to the TTWR intelligent experimental platform.A comparison of the simulation and experimental results shows that under the control of the preview tracking algorithm, the maximum error between the actual trajectory of the trailer and the trajectory predicted by the algorithm is generally no more than 9 cm, and the average error is 3.7 cm.This algorithm can provide an effective basis for TTWR system trajectory planning and path tracking.This algorithm is of great significance to TTWRs in warehousing logistics, freight forwarding, and skidding transportation.

الروبوت ذو العجلات المقطورة (TTWR) هو نظام روبوت متنقل معياري نموذجي. يستخدم على نطاق واسع في الصناعة والنقل الزراعي بسبب هيكله البسيط وحمله الثقيل وكفاءته العالية وقدرته القوية على التكيف ومرونته. نظرًا لأنه نظام غير خطي وغير نشط يخضع لقيود غير هندسية، فإن تعقيد النظام وتأثير اختلاف العجلة الداخلية يشكلان تحديات كبيرة للتنبؤ بالمسار وتخطيط المسار. لحل هذه المشكلة، تقترح هذه الورقة خوارزمية التنبؤ بالمسار لمقطورة غير مزودة بالطاقة لنظام TTWR. على النقيض من التخطيط التقليدي أحادي المسار، تجمع الخوارزمية خصائص الحركة لجرار الشاسيه من أكرمان، وتحلل قانون حركة المقطورة، وتراعي بشكل كامل الانحراف الجانبي للمقطورة أثناء عملية الدوران. يمكن للخوارزمية تخطيط مسار تعاوني معقول لنظام TTWR. للتحقق من جدوى وفعالية الخوارزمية، يتم نقل الخوارزمية إلى منصة TTWR التجريبية الذكية. تظهر مقارنة المحاكاة والنتائج التجريبية أنه تحت سيطرة خوارزمية تتبع المعاينة، الخطأ الأقصى بين المسار الفعلي للمقطورة والمسار الذي تنبأت به الخوارزمية لا يزيد عمومًا عن 9 سم، ومتوسط الخطأ هو 3.7 سم. يمكن أن توفر هذه الخوارزمية أساسًا فعالًا لتخطيط مسار نظام TTWR وتتبع المسار. هذه الخوارزمية ذات أهمية كبيرة لـ TTWRs في لوجستيات التخزين وشحن البضائع والنقل الانزلاقي.

Related Organizations
Keywords

Artificial intelligence, Biomechanics of Bipedal Locomotion in Robots and Animals, Path Planning, Trailer, Robot, Robot Navigation, Chassis, Flexibility (engineering), Astronomy, Biomedical Engineering, Trajectory, Structural engineering, Control (management), Control of Nonholonomic Mobile Robots, FOS: Medical engineering, Sampling-Based Motion Planning Algorithms, Engineering, Mobile robot, Control theory (sociology), FOS: Mathematics, Computer network, Physics, Statistics, tracking control, Coordination trajectory planning algorithm, Trajectory Tracking, Path (computing), Nonholonomic system, Computer science, prototype experiment, TK1-9971, Programming language, Algorithm, Control and Systems Engineering, Computer Science, Physical Sciences, tractor–trailer wheeled robot (TTWR), Motion planning, Electrical engineering. Electronics. Nuclear engineering, Computer Vision and Pattern Recognition, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold