
Recently there have been renewed interests in high order neural networks (HONNs) for its powerful mapping capability. Ridge polynomial neural network (RPNN) is an important kind of HONNs, which always occupies a key position as an efficient instrument in the tasks of classification or regression. In order to make the convergence speed faster and the network generalization ability stronger, we introduce a regularization model for RPNN with Group Lasso penalty, which deals with the structural sparse problem at the group level in this paper. Nevertheless, there are two main obstacles for introducing the Group Lasso penalty, one is numerical oscillation and the other is convergence analysis challenge. In doing so, we adopt smoothing function to approximate the Group Lasso penalty to overcome these drawbacks. Meanwhile, strong and weak convergence theorems, and monotonicity theorems are provided for this novel algorithm. We also demonstrate the efficiency of our proposed algorithm by numerical experiments, and compare it to the no regularizer, $L_{2}$ regularizer, $L_{1/2}$ regularizer, smoothing $L_{1/2}$ regularizer, and the Group Lasso regularizer, and also the relevant theoretical analysis has been verified.
high order neural networks, smoothing Group Lasso, ridge polynomial neural network, Electrical engineering. Electronics. Nuclear engineering, Convergence, TK1-9971
high order neural networks, smoothing Group Lasso, ridge polynomial neural network, Electrical engineering. Electronics. Nuclear engineering, Convergence, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
