Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2019
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

4-Bit Optimized Coding Metasurface for Wideband RCS Reduction

Authors: Yasir Saifullah; Abu Bakar Waqas; Guo-Min Yang; Fuheng Zhang; Feng Xu 0001;

4-Bit Optimized Coding Metasurface for Wideband RCS Reduction

Abstract

In this paper, a 4-bit reflective coding metasurface with the polarization-insensitive unit cell is designed for wideband radar cross section (RCS) reduction. The metasurface unit has rotational symmetry; therefore, it produces the same electromagnetic scattering response for both xand y-polarizations. To attain 4-bit phase response, the dimensions of the unit cell are optimized so that a phase difference of 22.5° is realized between respective digital elements and the magnitude of reflection is more than 0.95 from 15 GHz to 40 GHz. Therefore, 16 digital elements have phases of θ, θ + 22.5°, θ + 45°, θ + 67.5°, θ + 90°, θ + 112.5°, θ + 135°, θ + 157.5°, θ + 180°, θ +202.5°, θ +225°, θ +247.5°, θ +270°, θ +292.5°, θ +315°, and θ + 337.5°. Discrete water cycle algorithm (DWCA) is applied to the array factor to get the optimal coding sequence matrix for better RCS reduction. The coding metasurface can achieve more than 10 dB RCS reduction from 15 GHz to 40 GHz as compared with the same size of a copper sheet. The simulation and experiment results validate the ability of proposed coding metasurface for robust control of EM-wave and wideband RCS reduction.

Related Organizations
Keywords

coding, metasurface, radar cross section (RCS), Electrical engineering. Electronics. Nuclear engineering, 4-bit, discrete water cycle algorithm, reflective, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 10%
gold