Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pure Utrecht Univers...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pure Utrecht University
Conference object . 2010
https://doi.org/10.1109/photwt...
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exciton polaritons confined in ZnO nanowires

Authors: F. Koenderink; L.K. van Vugt; D. H. van Dorp; Sven Rühle; H.-Y. Li; Laurens Kuipers; Daniel Vanmaekelbergh;

Exciton polaritons confined in ZnO nanowires

Abstract

ZnO is one of the most attractive materials for optical applications in the visible and the near UV range, ranging from large-scale white-light illumination to miniaturized lasers for the near UV. Furthermore, the unique properties of the semiconductor ZnO are of high interest in the field where advanced optics meets the nanoarea. Because of strong exciton transitions near the electronic band gap and an electron-hole binding energy of 60 meV, the optical properties are dominated by strong light-matter interaction, involving exciton polaritons. In macroscopic ZnO structures, light absorption and emission mediated by excitonpolaritons has been investigated in much detail. It was observed that exciton-photon coupling expressed as the longitudinal-transverse energy splitting is considerable stronger than in other II-VI or III-V semiconductors. In ZnO nanostructures, exciton-photon coupling can even be considerably enhanced due to photon confinement

Country
Netherlands
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?