Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://ris.utwente....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/nems.2...
Article . 2017 . Peer-reviewed
Data sources: Crossref
Pure Utrecht University
Part of book or chapter of book . 2017
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and characterization of a microreactor for monodisperse catalytic droplet generation at both elevated temperatures and pressures

Authors: Bert M. Weckhuysen; Roald M. Tiggelaar; Anne-Eva Nieuwelink; Robin G. Geitenbeek; Jeroen C. Vollenbroek; Andries Meijerink; A. van den Berg; +2 Authors

Design and characterization of a microreactor for monodisperse catalytic droplet generation at both elevated temperatures and pressures

Abstract

We report the fabrication and characterization of a microfluidic droplet microreactor with potential use for single catalyst particle diagnostics. The aim is to capture Fluid Catalytic Cracking (FCC) particles in droplets and perform a probe reaction that results in a fluorescent output signal. The intensity of such a signal can be used as a measure of the catalytic activity of the particle. The microreactor features a droplet generator, platinum (Pt) microheaters, and Pt micro temperature sensors, and is able to operate at pressures up to at least 5 bar. Fluidic channels are etched in a silicon substrate, and platinum heater and sensor structures embedded in the glass cover. We have mapped the temperature inside the microchannels using nanoparticles that show temperature-dependent luminescence. At various spots on the chip, the temperature deviates by 0.86 degrees Celsius close to the Pt sensor and 5.5 degrees Celsius farther away from it. Experiments with making oil-in-water droplets at various temperatures and pressures result in stable droplets up to 100 degrees Celsius at atmospheric pressure. At this temperature, small gas bubbles are formed in the water phase, and then collected by the oil droplets. At a pressure of 5 bar, the droplets are stable up to at least 120 degrees Celsius. E-cat FCC particles were captured in water droplets at a rate of 150 droplets per second.

Country
Netherlands
Related Organizations
Keywords

E-cat FCC, droplet microfluidics, elevated temperature and pressure, Pt microheater, microreactor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average