
doi: 10.1109/18.986021
Summary: This paper studies the issue of optimal deconvolution density estimation using wavelets. The approach taken here can be considered as orthogonal series estimation in the more general context of the density estimation. We explore the asymptotic properties of estimators based on thresholding of estimated wavelet coefficients. Minimax rates of convergence under the integrated square loss are studied over Besov classes \(B_{\sigma pq}\) of functions for both ordinary smooth and supersmooth convolution kernels. The minimax rates of convergence depend on the smoothness of functions to be deconvolved and the decay rate of the characteristic function of convolution kernels. It is shown that no linear deconvolution estimators can achieve the optimal rates of convergence in the Besov spaces with \(p<2\) when the convolution kernel is ordinary smooth and super smooth. If the convolution kernel is ordinary smooth, then linear estimators can be improved by using thresholding wavelet deconvolution estimators which are asymptotically minimax within logarithmic terms. Adaptive minimax properties of thresholding wavelet deconvolution estimators are also discussed.
Signal theory (characterization, reconstruction, filtering, etc.), Nontrigonometric harmonic analysis involving wavelets and other special systems, Application of orthogonal and other special functions
Signal theory (characterization, reconstruction, filtering, etc.), Nontrigonometric harmonic analysis involving wavelets and other special systems, Application of orthogonal and other special functions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 115 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
